Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharmaceutica Sinica B ; (6): 1180-1191, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971744

RESUMO

Vascular dementia (VaD) is the second commonest type of dementia which lacks of efficient treatments currently. Neuroinflammation as a prominent pathological feature of VaD, is highly involved in the development of VaD. In order to verify the therapeutic potential of PDE1 inhibitors against VaD, the anti-neuroinflammation, memory and cognitive improvement were evaluated in vitro and in vivo by a potent and selective PDE1 inhibitor 4a. Also, the mechanism of 4a in ameliorating neuroinflammation and VaD was systematically explored. Furthermore, to optimize the drug-like properties of 4a, especially for metabolic stability, 15 derivatives were designed and synthesized. As a result, candidate 5f, with a potent IC50 value of 4.5 nmol/L against PDE1C, high selectivity over PDEs, and remarkable metabolic stability, efficiently ameliorated neuron degeneration, cognition and memory impairment in VaD mice model by suppressing NF-κB transcription regulation and activating cAMP/CREB axis. These results further identified PDE1 inhibition could serve as a new therapeutic strategy for treatment of VaD.

2.
Acta Pharmaceutica Sinica B ; (6): 1351-1362, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929342

RESUMO

Scaffold hopping refers to computer-aided screening for active compounds with different structures against the same receptor to enrich privileged scaffolds, which is a topic of high interest in organic and medicinal chemistry. However, most approaches cannot efficiently predict the potency level of candidates after scaffold hopping. Herein, we identified potent PDE5 inhibitors with a novel scaffold via a free energy perturbation (FEP)-guided scaffold-hopping strategy, and FEP shows great advantages to precisely predict the theoretical binding potencies ΔG FEP between ligands and their target, which were more consistent with the experimental binding potencies ΔG EXP (the mean absolute deviations | Δ G FEP - Δ G EXP |  < 2 kcal/mol) than those ΔG MM-PBSA or ΔG MM-GBSA predicted by the MM-PBSA or MM-GBSA method. Lead L12 had an IC50 of 8.7 nmol/L and exhibited a different binding pattern in its crystal structure with PDE5 from the famous starting drug tadalafil. Our work provides the first report via the FEP-guided scaffold hopping strategy for potent inhibitor discovery with a novel scaffold, implying that it will have a variety of future applications in rational molecular design and drug discovery.

3.
Acta Pharmaceutica Sinica B ; (6): 853-866, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929330

RESUMO

N 6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPβ. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.

4.
Acta Pharmaceutica Sinica B ; (6): 3103-3112, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-939952

RESUMO

Our previous study demonstrated that phosphodiesterase 8 (PDE8) could work as a potential target for vascular dementia (VaD) using a chemical probe 3a. However, compound 3a is a chiral compound which was obtained by chiral resolution on HPLC, restricting its usage in clinic. Herein, a series of non-chiral 9-benzyl-2-chloro-adenine derivatives were discovered as novel PDE8 inhibitors. Lead 15 exhibited potent inhibitory activity against PDE8A (IC50 = 11 nmol/L), high selectivity over other PDEs, and remarkable drug-like properties (worthy to mention is that its bioavailability was up to 100%). Oral administration of 15 significantly improved the cAMP level of the right brain and exhibited dose-dependent effects on cognitive improvement in a VaD mouse model. Notably, the X-ray crystal structure of the PDE8A-15 complex showed that the potent affinity and high selectivity of 15 might come from the distinctive interactions with H-pocket including T-shaped π-π interactions with Phe785 as well as a unique H-bond network, which have never been observed in other PDE-inhibitor complex before, providing new strategies for the further rational design of novel selective inhibitors against PDE8.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-114033

RESUMO

In all of the clinical trials for COVID-19 conducted thus far and among those ongoing involving chloroquine or hydroxychloroquine, the drug substance used has invariably been chloroquine (CQ) diphosphate or hydroxychloroquine (HCQ) sulfate, i.e., the phosphoric or sulfuric acid salt of a racemic mixture of R- and S-enantiomer (50/50), respectively. As a result, the clinical outcome from previous CQ or HCQ trials were, in fact, the collective manifestation of both R and S- enantiomers with inherent different pharmacodynamic and pharmacokinetic properties, and toxicity liabilities. Our data for the first time demonstrated the stereoselective difference of CQ and HCQ against live SARS-CoV-2 virus in a Biosafety Level 3 laboratory. S-chloroquine (S-CQ) and S-hydroxychloroquine (S-HCQ) significantly more active against SARS-CoV-2, as compared to R-CQ and R-HCQ, respectively. In addition, Mpro, as one of the critical enzymes for viral transcription and replication, also exhibited an enantioselective binding affinity toward the S-enantiomers. The most significant finding from this study is the pronounced difference of the two enantiomers of CQ and HCQ observed in hERG inhibition assay. The IC50 value of S-HCQ was higher than 20 M against hERG channel, which was much less active over all tested CQ and HCQ compounds. Moreover, S-HCQ alone did not prolong QT interval in guinea pigs after 3 days and 6 days of administration, indicating a much lower cardiac toxicity potential. With these and previous findings on the enantio-differentiated metabolism, we recommend that future clinical studies should employ S-HCQ, substantially free of the R-enantiomer, to potentially improve the therapeutic index for the treatment of COVID-19 over the racemic CQ and HCQ.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-004580

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and, thus, repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a new virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a new restraint energy distribution (RED) function designed to accelerate the FEP-ABFE calculations and make the practical FEP-ABFE-based virtual screening of the existing drug library possible for the first time. As a result, out of twenty-five drugs predicted, fifteen were confirmed as potent inhibitors of SARS-CoV-2 Mpro. The most potent one is dipyridamole (Ki=0.04 M) which has showed promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki=0.36 M) and chloroquine (Ki=0.56 M) were also found to potently inhibit SARS-CoV-2 Mpro for the first time. We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts. Significance StatementDrug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. It has been demonstrated that a new virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions can reach an unprecedently high hit rate, leading to successful identification of 16 potent inhibitors of SARS-CoV-2 main protease (Mpro) from computationally selected 25 drugs under a threshold of Ki = 4 M. The outcomes of this study are valuable for not only drug repurposing to treat COVID-19, but also demonstrating the promising potential of the FEP-ABFE prediction-based virtual screening approach.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20027557

RESUMO

The human coronavirus HCoV-19 infection can cause acute respiratory distress syndrome (ARDS), hypercoagulability, hypertension, extrapulmonary multiorgan dysfunction. Effective antiviral and anti-coagulation agents with safe clinical profiles are urgently needed to improve the overall prognosis. We screened an FDA approved drug library and found that an anticoagulant agent dipyridamole (DIP) suppressed HCoV-19 replication at an EC50 of 100 nM in vitro. It also elicited potent type I interferon responses and ameliorated lung pathology in a viral pneumonia model. In analysis of twelve HCoV-19 infected patients with prophylactic anti-coagulation therapy, we found that DIP supplementation was associated with significantly increased platelet and lymphocyte counts and decreased D-dimer levels in comparison to control patients. Two weeks after initiation of DIP treatment, 3 of the 6 severe cases (60%) and all 4 of the mild cases (100%) were discharged from the hospital. One critically ill patient with extremely high levels of D-dimer and lymphopenia at the time of receiving DIP passed away. All other patients were in clinical remission. In summary, HCoV-19 infected patients could potentially benefit from DIP adjunctive therapy by reducing viral replication, suppressing hypercoagulability and enhancing immune recovery. Larger scale clinical trials of DIP are needed to validate these therapeutic effects.

8.
Acta Pharmaceutica Sinica B ; (6): 327-343, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-787625

RESUMO

Our recent studies demonstrated that the natural product nobiletin (NOB) served as a promising multidrug resistance (MDR) reversal agent and improved the effectiveness of cancer chemotherapy . However, low aqueous solubility and difficulty in total synthesis limited its application as a therapeutic agent. To tackle these challenges, NOB was synthesized in a high yield by a concise route of six steps and fourteen derivatives were synthesized with remarkable solubility and efficacy. All the compounds showed improved sensitivity to paclitaxel (PTX) in P-glycoprotein (P-gp) overexpressing MDR cancer cells. Among them, compound exhibited water solubility 280-fold higher than NOB. A drug-resistance A549/T xenograft model showed that at a dose of 50 mg/kg co-administered with PTX (15 mg/kg), inhibited tumor growth more effective than NOB and remarkably increased PTX concentration in the tumors P-gp inhibition. Moreover, Western blot experiments revealed that inhibited expression of NRF2, phosphorylated ERK and AKT in MDR cancer cells, thus implying of multiple mechanisms to reverse MDR in lung cancer.

9.
Acta Pharmaceutica Sinica B ; (6): 2339-2347, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881115

RESUMO

Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor

10.
Acta Pharmaceutica Sinica B ; (6): 1205-1215, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-828851

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) , which suppressed SARS-CoV-2 replication . In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers ( < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.

11.
Acta Pharmaceutica Sinica B ; (6): 615-628, 2018.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-690878

RESUMO

The pathological processes of Alzheimer's disease and type 2 diabetes mellitus have been demonstrated to be linked together. Both PDE9 inhibitors and PPAR agonists such as rosiglitazone exhibited remarkable preclinical and clinical treatment effects for these two diseases. In this study, a series of PDE9 inhibitors combining the pharmacophore of rosiglitazone were discovered. All the compounds possessed remarkable affinities towards PDE9 and four of them have the IC values <5 nmol/L. In addition, these four compounds showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Compound , the most effective one, gave the IC of 1.1 nmol/L towards PDE9, which is significantly better than the reference compounds PF-04447943 and BAY 73-6691. The analysis of putative binding patterns and binding free energy of the designed compounds with PDE9 may explain the structure-activity relationships and provide evidence for further structural modifications.

12.
Acta Pharmaceutica Sinica ; (12): 1198-1204, 2008.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-232618

RESUMO

The inhibition activity of 36 flavonoids against CYP1A2 was determined by our previously developed in vitro method. The Comparative Molecular Similarity Indexes Analysis (CoMSJA) approach was used to probe the quantitative relationships between the flavonoids' molecular structural descriptors and their inhibitory activities. A reliable CoMSIA model with the combined electrostatic and hydrophobic fields was derived with the regression coefficient R2 of 0.948 and the cross-validation regression coefficient q2 of 0.630, separately, which is capable of elucidating the quantitative relationship between the 3D structural descriptors of the flavones and their bioactivities. Comparing with flavone, the larger pi-pi conjugated system of alpha-naphthoflavone significantly improved the biologically inhibitory ability. Based on the core structure of the latter, either electropositive substituents or hydrophobic groups at the 6, 3', and 4' ring positions or electronegative counterparts at the 5 ring position, can enhance the inhibitory potency against CYP1 A2 according to the CoMSIA contour maps.


Assuntos
Humanos , Citocromo P-450 CYP1A2 , Metabolismo , Inibidores do Citocromo P-450 CYP1A2 , Flavonoides , Química , Farmacologia , Microssomos Hepáticos , Metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...